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Interaction of an Aliphatic Hydrogen Atom with a 
Transition Metal. The First Direct Observation of 
a Strong C—H"*Metal Interaction Derived from 
a Single Crystal Neutron Diffraction Study1 

of|Fe[P(OCH3)3]3ft3-C8H,3)!+[BF4]-

SiV; 

It is generally agreed that metal-complex-induced C-H 
bond "activation", which is of extreme fundamental and 
commercial importance in homogeneously catalyzed chemical 
reactions,2-3 often proceeds via a C—H—metal intermediate 
of heretofore unknown geometry.3 Important structural 
questions associated with the process of C—H bond activation 
are (1) how much is a C—H bond stretched when the H atom 
interacts with a metal center, and (2) what angular deforma­
tions occur at the C atom upon formation of the C—H-M 
intermediate? Except for very strong B—H-Mo4 and C— 
H-Mo5 '6 interactions discussed below, weak M-H interac­
tions of ~2.6-2.9 A derived mainly from X-ray diffraction 
investigations have been found in Pdl2(PMe2Ph)2,7 

RuClH(PPh3)3,8 Rh(SiCl3)ClH(PPh3)2,9 [Rh(PPh3),]-
ClO4-CH2Cl2,

10 RuCl2(PPh3):,,
1' Pd[PPh(r-Bu)2]2,

12 and 
Pt[PPh(I-Bu)2J2-'

2 In this regard, although numerous neutron 
diffraction studies of M—H and M—H—M systems have 
been reported,13 no such studies of C—H-M systems have 
been reported.31 We report the first direct structural obser­
vation of an unprecedentedly strong C—H-M interaction in 
the metal-hydrocarbon complex jFe[P(OMe)3]3(?j3-
CsHi3)J+[BF4]", 1. The neutron diffraction study of 1 was 
undertaken in order to precisely define the structural geometry 
of a possible C—H-Fe intermediate which might be a possible 
precursor to aliphatic C—H bond scission. 

Figure 1. Atom labeling scheme for the jFelPtOCHsbb^-CgHM)!+ 
cation (-OCH3 groups omitted for clarity) showing the distorted octa­
hedral coordination around the Fe atom with the aliphatic H atom 
(H( 1 A)) occupying a coordination site. The very strong C(I)—H(I A)-Fe 
interaction, in which the Fe-H(I A) distance is ~0.1 A greater than the 
sum of the covalent radii, is indicated with a faint line. The thermal el­
lipsoids of nuclear motion for all atoms are scaled to enclose 50% proba­
bility and important internuclear distances (uncorrected for thermal 
motion) are given with their estimated standard deviations. The C(I)-
H(IA)-Fe angle is 100.6 (6)°. The C(2)-C(l)-C(8) angle is 116.6(4)" 
while the other five tetrahedral angles subtended at C( 1) are in the range 
of 104.2-110.8°. The range of C-C-C angles for the remaining aliphatic 
carbon atoms is from 114.5 to 117.4°. 
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Figure 2. Stereoscopic drawing of the |Fe[P(OCH3)3]3(r;3-C8H|3)j+ cation ( 
accompanies the formation of the strong C—H-Fe interaction (indicated 
(approximately) two Fe coordination sites. 

Two models (a and b), meant to represent extremes of 
C—H-M type interactions were proposed by Cotton and 
co-workers in their pioneering X-ray diffraction5-6 and NMR7 

studies of B—H-Mo and C—H-Mo interactions in molyb­
denum pyrazolylborate complexes. Parshall3 has suggested a 

— C - H - M - ^ C - H H—C—v 
/ / \ / \ / 1 

M M P 
b 

transition state similar to b as denoted by c. In the case of the 
molybdenum pyrazolylborate complexes, convincing argu­
ments were given that the 3-center "bond" was linear, that it 
was best represented by a above, and that for the C—H-Mo 
system the Mo-H distance was short at ~2.2 A.14 This dis­
tance is ~0.4-0.5 A longer than terminal (Mo—H1) or 
bridging (Mo—Hb) separations which have been determined 
recently.15 

In a recent report18 describing 1, two independent fluxional 
processes were described. The first involved the phosphite Ii-
gands only and the second was ascribed to the CgH 13 ring 
whereby one proton on each a-carbon (C(I) and C(5)) atom 
was alternately involved in a C—H-Fe interaction. It was 
observed that 1 is not an Fe hydride as was reported for the 
protonated cyclohexadiene tricarbonyliron system,19 2. Both 
1 and 2 were similar in that the existence of strong Fe-H—C 
interactions20 was suggested. We have confirmed the existence 
of a very strong Fe-H interaction in 1 and the geometry of the 
[FeL3(7r-enyl)]+ cation, derived from our single crystal neu­
tron diffraction study, is presented in Figure P.21 A stereopair 
of the cation is displayed in Figure 2 for clarity. The most 
important finding involves the 3-center C(I)—H(IA)-Fe 
interaction which contains a very short H(IA)-Fe distance 
of 1.879 (9) A. Using published covalent radii (Fe (1.40 A)24 

and H (0.37 A)13), we would expect a terminal covalent 
Fe—H, (H = hydride) distance to be ~1.77 A. This distance 
agrees very well, after allowing for the usual 0.1 -0.2 A short­
ening due to the X-ray experiment, with the value of Fe—Ht 
= 1.57 ± 0.12 A observed25 in [(Ph3P)2N] + [HFe(CO)4]". 
Therefore, we would expect an Fe—H1 separation tobe~1.8 
A, which is only ~0.1 A less than that observed in I.32 Con­
sidering that bridging X—Hb—X bonds (X = B, N, O, F, Cl, 

-OCH3 groups omitted) which clearly shows the C8Hi3 ring distortion which 
by a faint line). The terminal C atoms of the allylic group appear to occupy 

and many metals) are usually 0.1-0.2 A longer13 than X—Ht, 
then the value of 1.879 (9) A observed in 1 indicates a 
"bonding" interaction with the metal. This is clearly visible 
in Figure 2 in which the H atom occupies a coordination site 
in the distorted octahedral array around the Fe atom. This is 
exemplified by the H(IA)-Fe-P(I), H(1A)-Fe-P(2), and 
H(I A)-Fe-P(3) angles of 93.5 (3), 176.8 (3), and 89.1 (3)°, 
respectively. While the Fe-H distance determined here indi­
cates considerable M-H interaction, the experimentally de­
rived C(I ) -H(IA) distance of 1.137 (10) A is not signifi­
cantly longer than the other aliphatic C—H distances in the 
CgHn ring or that of 1.10 A established by spectroscopic 
methods.26,27 However, an upper limit of 1.17 A for the 
C(I)—H(IA) bond, based on a 3<r criterion, cannot be ruled 
out. Because of a lack of significant C(I)—H(IA) bond 
lengthening, a condition which we would expect if electron 
density from the C—H bond were delocalized into the C— 
H-Fe system, we hesitate to describe the C—H-Fe interac­
tion in terms of a fully delocalized30 2-electron 3-center bond, 
but rather as a precursor to a 2-electron 3-center bond. There 
may also be an analogy between the C—H-Fe interaction 
observed here and that of "semibridging" carbonyl groups28 

observed in transition metal complexes. 
From Figure 2 it is also readily apparent that the Fe-H(IA) 

interaction is of sufficient strength to cause a distortion of the 
C«H 13 ring such that C(I) is displaced toward Fe, and C(4) 
is displaced away from Fe, as H(IA) moves to occupy the 
available Fe octahedral coordination site. From the solution 
NMR18 studies it is the dynamic interaction, alternately in­
volving C(I) and C(5) and one proton from each, which results 
in the Fe-H 2-site interaction.29 Thus, the solid-state molec­
ular structure as determined by this neutron diffraction study 
most likely represents one of two possible extremes observed 
during the fluxional process of the QH13 ring. The fact that 
this configuration is observed, rather than one with the H 
atoms of C(I) and C(5) equidistant from the Fe atom, indi­
cates that positioning a hydrogen atom in an octahedral 
coordination site of Fe is an energetically stabilizing effect. 
Finally, it is tempting to speculate that, in certain homoge­
neously catalyzed reactions, an otherwise inert C—H bond is 
activated (lengthened and weakened) as a result of the for­
mation of a delocalized 3-center 2-electron C—H-*M 
bond. 
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Polyandrocarpidines: Antimicrobial and Cytotoxic 
Agents from a Marine Tunicate (Polyandrocarpa sp.) 
from the Gulf of California1 

Sir: 

During the Illini-Trojan Baja expedition of 1976,2 a red 
encrusting colonial tunicate was identified in our mobile lab­
oratory as possessing potent activity against Bacillus subtilis. 
Subsequently, the tunicate was identified as a Polyandrocarpa 
sp.,3 and its extracts were demonstrated to have cytotoxic 
(L12104a and KB4b cells) as well as antibacterial activity. We 
assign here the structure of the major bioactive component of 
this species (polyandrocarpidine I) as la (Chart I) and the 
minor component (polyandrocarpidine II) as lb. The poly­
androcarpidines are remarkable, both for the occurrence of the 
highly strained cyclopropene ring (heretofore found in nature 
only in sterculic and related acids5a 'b and in calysterol5c) and 
for their relationship to the recently discovered acarnidines 
(2a-c),6 which occur in a sponge (Acarnus erithacus), in a 

(CHi)2C=CHCONH(CH,):iN(CH,):>NHR 

COR' 
2a-c, 4a-c 

2a-c, R = C(=NH)NH 2 
2a, R' = (CHJ10CH3 

b, R' = (CH2J3CH=CH(CHJ5CH3 (Z) 
c, R' = (CH,)3(CH=CHCH2)3CH3 (all-Z) 

4a-c, R = — < Q 

4a, R' = (CH2),0CH3 
b, R' = (CH2).,CH=CH(CH2)SCH3 (Z) 
c, R' = (CH2)3(CH=CHCH2)3CH3 (all-Z) 

phylum (Porifera) very distant from that of the tunicates 
(Chordata). 

A sample of the Polyandrocarpa species was homogenized 
in the ethanol in which it had been stored and the chloro­
form-soluble fraction of the concentrated ethanol extract was 
chromatographed over a silica gel column. Elution with chlo-
roform-methanol (3:2) gave a mixture consisting of 90% 
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